Найти углы трапеции известны стороны. Прямоугольная трапеция: все формулы и примеры задач. Свойства трапеции, вписанной в окружность

Трапеция - это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они называются основаниями трапеции , а две другие стороны - боковыми сторонами трапеции .

Инструкция

Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции . Пусть известны углы &ang-BAD и &ang-CDA, найдем углы &ang-ABC и &ang-BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°-. Тогда &ang-ABC = 180°--&ang-BAD, а &ang-BCD = 180°--&ang-CDA.

трапеции" class="lightbx" data-lightbox="article-image">

В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол &ang-CAD = α-.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда &ang-BAC = &ang-BCA. Обозначим его x для краткости, а &ang-ABC - y. Сумма углов любого треугольник а равна 180°-, из этого следует, что 2x + y = 180°-, тогда y = 180°- - 2x. В то же время из свойств трапеции : y + x + α- = 180°- и следовательно 180°- - 2x + x + α- = 180°-. Таким образом, x = α-. Мы нашли два угла трапеции : &ang-BAC = 2x = 2α- и &ang-ABC = y = 180°- - 2α-.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит,

Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению , как говориться: куда мы без теоремы Пифагора, ?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, .

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

Рассмотрим задачи:

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

Таким образом:

Ответ: 0,96

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:


27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

Можем вычислить высоту трапеции, а затем найти катет:

По теореме Пифагора вычисляем катет:

Таким образом, меньшее основание равно:

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее основание разбивается на отрезки:

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:


Таким образом большее основание будет равно:

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

По определению тангенса:

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

Выразим гипотенузу обозначенную как х через косинус:

Из основного тригонометрического тождества найдём cosα

Таким образом:

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50 0 ? Ответ дайте в градусах.

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 180 0 . В нашем случае это

C условии сказано, что разность противолежащих углов равна 50 0 , то есть

Трапеция – это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они именуются основаниями трапеции , а две другие стороны – боковыми сторонами трапеции .

Инструкция

1. Задача нахождения произвольного угла в трапеции требует довольного числа дополнительных данных. Разглядим пример, в котором знамениты два угла при основании трапеции . Пускай вестимы углы ∠BAD и ∠CDA, обнаружим углы ∠ABC и ∠BCD. Трапеция владеет таким свойством, что сумма углов при всякой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.

2. В иной задаче может быть указано равенство сторон трапеции и какие-либо добавочные углы. Скажем, как на рисунке, может быть вестимо, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Разглядим треугольник ABC, он равнобедренный, потому что AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC – y. Сумма углов всякого треугольник а равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° – 2x. В то же время из свойств трапеции : y + x + α = 180° и следственно 180° – 2x + x + α = 180°. Таким образом, x = α. Мы обнаружили два угла трапеции : ∠BAC = 2x = 2α и ∠ABC = y = 180° – 2α.Потому что AB = CD по условию, то трапеция равнобокая либо равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° – 2α.

Диагональ многоугольника – отрезок, тот, что соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины либо не принадлежащие одной стороне многоугольника ). В параллелограмме, зная длину диагоналей и длину сторон, дозволено рассчитать углы между диагоналями .

Инструкция

1. Для комфорта воспринятия информации начертите на листе бумаги произвольный параллелограмм АВСD (параллелограмм – это четырехугольник, противоположные стороны которого попарно равны и параллельны). Объедините противоположные вершины отрезками. Полученные АС и ВD – диагонали. Обозначьте точку пересечения диагоналей буквой О. Нужно обнаружить углы ВОС (АОD) и СOD (АОВ).

2. Параллелограмм владеет целым рядом математических свойств:- диагонали точкой пересечения делятся напополам; – диагональ параллелограмма делит его на два равных треугольника ;- сумма всех углов в параллелограмме равна 360 градусов;- сумма углов, прилежащих к одной стороне параллелограмма, равна 180 градусам;- сумма квадратов диагоналей равна двойственный сумме квадратов его смежных сторон.

3. Дабы обнаружить углы между диагоналями , воспользуйтесь теоремой косинусов из теории элементарной геометрии (Евклидовой). Согласно теореме косинусов, квадрат стороны треугольника (A) дозволено получить, сложив квадраты 2-х его других сторон (B и C), и из полученной суммы вычесть двойное произведение этих сторон (B и C) на косинус угла между ними.

4. Применительно к треугольнику ВОС параллелограмма АВСD теорема косинусов будет выглядеть дальнейшим образом:Квадрат ВС = квадрат ВО + квадрат ОС – 2*ВО*ОС*cos угла ВOCОтсюда соs угла BOC = (квадрат ВС –квадрат ВО – квадрат ОС) / (2*ВО*ОС)

5. Обнаружив значение угла ВОС (АОD) легко вычислить значение иного угла, заключенного между диагоналями – СОD (АОВ). Для этого из 180 градусов вычтите значение угла ВОС (АОD) – т.к. сумма смежных углов равна 180 градусам, а углы ВОС и СОD и углы АОD и АОВ – смежные.

Видео по теме

Для решения этой задачи способами векторной алгебры, вам нужно знать следующие представления: геометрическая векторная сумма и скалярное произведение векторов, а также следует помнить качество суммы внутренних углов четырехугольника.

Вам понадобится

  • – бумага;
  • – ручка;
  • – линейка.

Инструкция

1. Вектор – это направленный отрезок, то есть величина, считающаяся заданной всецело, если задана его длина и направление (угол) к заданной оси. Расположение вектора огромнее ничем не ограничено. Равными считаются два вектора, владеющие идентичными длинами и одним направлением. Следственно при применении координат векторы изображают радиус-векторами точек его конца (предисловие располагается в начале координат).

2. По определению: результирующим вектором геометрической суммы векторов именуется вектор, исходящий из начала первого и имеющего конец в конце второго, при условии, что конец первого, совмещен с началом второго. Это дозволено продолжать и дальше, строя цепочку подобно расположенных векторов. Изобразите данный четырехугольник ABCD векторами a, b, c и d в соответствии рис. 1. Видимо, что при таком расположении результирующий вектор d=a+ b+c.

3. Скалярное произведение в данном случае комфортнее каждого определить на основе векторов a и d. Скалярное произведение, обозначаемое (a, d)= |a||d|cosф1. Тут ф1 – угол между векторами a и d. Скалярное произведение векторов, заданных координатами, определяется следующими выражением: (a(ax, ay), d(dx, dy))=axdx+aydy, |a|^2= ax^2+ ay^2, |d|^2= dx^2+ dy^2, тогда cos Ф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2)).

4. Основные представления векторной алгебры в привязке к поставленной задаче, приводят к тому, что для однозначной постановки этой задачи довольно задание 3 векторов, расположенных, возможен, на AB, BC, и CD, то есть a, b, c. Дозволено финально сразу задать координаты точек A, B, C, D, но данный метод является избыточным (4 параметра взамен 3-х).

5. Пример. Четырехугольник ABCD задан векторами его сторон AB, BC, CD a(1,0), b(1,1), c(-1,2). Обнаружить углы между его сторонами. Решение. В связи с высказанным выше, 4-й вектор (для AD) d(dx,dy)=a+ b+c={ax+bx +cx, ay+by+cy}={1,3}. Следуя методике вычисления угла между векторами аcosф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2))=1/sqrt(10), ф1=arcos(1/sqrt(10)).-cosф2=(axbx+ayby)/(sqrt(ax^2+ ay^2)sqrt(bx^2+ by^2))=1/sqrt2, ф2=arcos(-1/sqrt2), ф2=3п/4.-cosф3=(bxcx+bycy)/(sqrt(bx^2+ by^2)sqrt(cx^2+ cy^2))=1/(sqrt2sqrt5), ф3=arcos(-1/sqrt(10))=п-ф1. В соответствии с примечанием 2 – ф4=2п- ф1 – ф2- ф3=п/4.

Видео по теме

Обратите внимание!
Примечание 1. В определении скалярного произведения применяется угол между векторами. Тут, скажем, ф2 – это угол между АВ и ВС, а между a и b данный угол п-ф2. сos(п- ф2)=- сosф2. Подобно для ф3.Примечание 2. Знаменито, что сумма углов четырехугольника равна 2п. Следственно ф4=2п- ф1 – ф2- ф3.

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

Трапеция - это геометрическая фигура, четырехугольник, который имеет две параллельные линии. Иные две линии параллельными быть не могут, в таком случае это был бы параллелограмм.

Виды трапеций

Трапеции бывают трех видов: прямоугольная, когда два угла трапеции составляют по 90 градусов; равносторонняя, в которой две боковые линии равные; разносторонняя, где боковые линии разной длинны.

Работая с трапециями, можно научиться вычислять их площадь, высоту, размер линий, а также разобраться в том, как находить углы трапеции.

Прямоугольная трапеция

Прямоугольная трапеция имеет два угла по 90 градусов. Сумма остальных двух углов равняется 180 градусам. Поэтому есть способ, как найти углы прямоугольной трапеции, зная размер одного из углов. Пусть он составляет, например, 26 градусов. Всего лишь необходимо из общей суммы углов трапеции - 360 градусов — вычесть сумму известных углов. 360-(90+90+26) = 154. Искомый угол будет составлять 154 градуса. Можно считать проще: так как два угла — прямые, то в сумме они будут составлять 180 градусов, то есть половину 360; сумма непрямых углов также будет равна 180, поэтому можно сосчитать проще и быстрее 180 -26 =154.

Равнобедренная трапеция

Равнобедренная трапеция имеет две равные стороны, которые не являются основаниями. Есть формулы, которые разъясняют, как найти углы равнобедренной трапеции.

Расчет 1, если даны размеры сторон трапеции

Они обозначаются буквами A, В и C: A - размеры боковых сторон, В и C - размеры основания, меньшего и большего соответственно. Трапецию необходимо также назвать АВСD. Для вычислений необходимо провести высоту Н из угла В. Образовался прямоугольный треугольник ВНА, где АН и ВН - катеты, АВ - гипотенуза. Теперь можно вычислить размер катета АН. Для этого необходимо от большей основы трапеции вычесть меньшую, и разделить пополам, т.е. (с-b)/2.

Чтобы найти острый угол треугольника, необходимо использовать функциюcos. Cos искомого угла (β) будет равен а / ((с-b)/2). Чтобы узнать размер угла β, необходимо воспользоваться функцией arcos. β = arcos 2а/с-b. Т.к. два угла равносторонней трапеции равны, то они будут составлять: угол ВАD = углу СDА = arcos 2а/с-b.

Расчет 2. Если даны размеры оснований трапеции.

Имея значения оснований трапеции - а и b, можно воспользоваться тем же методом, что и в предыдущем решении. Из угла b необходимо опустить высоту h. Имея размеры двух катетов только что созданного треугольника, можно воспользоваться похожей тригонометрической функцией, только в этом случае это буде tg. Чтобы преобразовать угол и получить его значение, необходимо воспользоваться функцией arctg. Исходя из формул, получаем размеры искомых углов:

β = arctg 2h/с-b, а угол α = 180 - arctg 2h/с-b/

Обычная разносторонняя трапеция

Есть способ, как найти больший угол трапеции. Для этого необходимо знать размеры обоих острых углов. Зная их, и зная, что сумма углов при любом основании трапеции составляет 180 градусов, делаем вывод, что искомый тупой угол будет состоять из разницы 180 - размер острого угла. Также можно найти и другой тупой угол трапеции.

Понравилась статья? Поделитесь с друзьями!